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Statistical mechanics of solutions 

D Levesque, J M Caillol and J J Weis 
Laboratoire de Physique Theorique et Hautes Energies, Universitk Pans Sud, 
Bttiment 211, 91405 Orsay, France 

Received 5 October 1990 

Abstract. The theomtical calculation of the properties of the ionic solutions is 
discussed from the viewpoint of numerical simulations. We consider the simple case 
of the mixture of a solvent of polar molecules and ions and also, briefly, the case 
where both solvent molecules and ions are polarizable. 

In a simulation of an ionic solution, the computation of the generalized frequency 
dependent dielectric constant C ( w )  is not as straighforward as, for instance, the calcu- 
lation of the transport coefficients of neutral and non-polar molecular systems. Due to  
the long range of the electric interactions, the expression for C ( w )  in terms of P ,  the 
microscopic polarisation, and j ,  the microscopic electric current in the system, de- 
pends on the shape and boundary conditions of the volume enclosing the solution [l]. 
The  first part of this paper will be devoted to the general outline of the method allow- 
ing to solve this problem and to its application to  the systems which are localized in a 
cubic volume with periodic boundary conditions [2, 31. In the second part we present 
the results of a computation of C ( w )  [4] and discuss the problem of the convergence 
of the statistical averages in the simulation of ionic solutions. 

We first deal with the derivation of formulae for C(w) .  The  ensemble averages P 
and J of P and j are defined by 

) J(T, t )  = ( j )  = C*p;(t) S(T - T i ( t ) )  
( i  

where the  indices s and i correspond respectively to the solvent molecules and ions, 
p, is the dipole of a solvent molecule and pi is the charge of a ion. P and J give an  
estimate of the macroscopic polarisation and current in the solution. These macro- 
scopic quantities are related to  the Maxwell electric field E ( r , t )  by equations which 
define the time dependent dielectric constant and conductivity tensors E ( T ,  T I ,  t )  and 
4 T  , T I ,  t )  

4 ~ P ( r , t )  = 11 dt’ l dr ’ (E(T , r ’ , t  - t ’ )  - l ) - E ( ~ ’ , t ’ )  

47rJ(r,t) = /‘ dt’ l d d u ( T , T ’ , t  - t ’ ) . E ( ~ ’ , t ’ )  

(3) 

(4) 
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where V the volume of the system and I is an unit tensor local in space and time. 

(4) become after Fourier-Laplace transform on t 
Assuming a local and isotropic form for the tensors U and E ,  the formulae (3) and 

47rP(r, U )  = ( E  ( U )  - 1) E ( T , U )  47FJ(T, W )  = .(U) E(T,  U ) .  (5) 

E ( r ,  W )  can be obtained from the solution of Maxwell’s equations in the limit, valid for 
the considered sytems, where the propagating modes are neglected. In the presence of 
an external electric field E e x ( r ,  W )  and for a system surrounded by empty space, this 
solution has the form 

i 
E E,, + G0o(P + -J) 

W 

where 1 is an unit tensor local in space, o represents both convolution in r space and 
tensor multiplication and Go denotes the Green function associated with Maxwell’s 
equations in the electrostatic limit. 

Using the relations ( 5 ) ,  equation (6) can be written 

E = E,, + CG, o E (7) 

where 

(8) 
4 Ti 

E ( W )  = ( € ( U )  - 1) + ----.(W). 
W 

The formal solution of equation (7) is 

E 1 E,, + EGO 0 (1 - o E,, E E,, + E G O  E,, . (9) 

With this expression for E the relations ( 5 )  become 

On the other hand, expressions of P and J can be derived from the linear response 
theory in presence of the external field E,, 

~ ~ F P ( T , W )  = p [ ( P P )  + iu(PP), + (Pj),] o E,, 
(11) 

4 7 r ~ ( r , w )  = ~ [ ( j j ) ,  + i w ( j P ) , ]  o E,, 

where ,B = l / k T ,  ( gp ) , ,  ( P j ) , , .  . . are the Fourier-Laplace transforms of the time- 
dependent correlation functions ( P ( r ,  O)P(r’, t ) ) ,  ( P ( r ,  O)j(r’, t ) ) ,  . . . and ( P P )  = 
( @ ( r ,  O)p(r’, 0)) .  The time-dependent correlation functions are easily computable by 
numerical simulations a s  an integral on t along the trajectories of the molecules, for 
instance 

( i ) ( r ,  O ) @ ( T ’ ,  t ) )  cx dt’P(r, t’)i)(r’ ,  t + t ’ )  . (12) J 
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The comparison between the two sets of equations (10) and (11) allows one to  eliminate 
E,,, P and J and to  obtain the general expression of C in terms of the correlation 
functions of P and j ,  and of G. Obviously G is a rather complicated quantity which 
clearly depends on the shape and boundary conditions of the system through CG,. 
However i t  can be computed in a few cases, for instance for the infinite system and, 
fortunately, for the systems with periodic boundary conditions used in the numerical 
simulations. In these systems the Coulomb potential must be replaced by the Ewald 
potential which takes into account the effect of the periodic boundary conditions 

1 2 i ~  r2 
- 3 Q ( r )  = Q E ( T )  + -- r 2€1+ 1 v 

where Q E ( r )  is a known periodic function and the last term is the contribution of 
the dielectric medium supposed to  surround the infinite set of periodic replicas of the 
simulation cell [5]. Then the Green function G satisfies 

1 
dr’ G(T,  T ’ ,  U) = - C(w)  + 2 E ’  + 1 U .  (14) 

where U is the unit tensor. Using these results and the definitions 

F ( t )  = d r  P(T, t )  j ( t )  = d r  j ( r , t )  

we obtain for d = 1 

and for E /  = CO 

P - -  
3 v  

.(U) = -[(J.J),+~W(J-M),]. 

It is worth noticing the important differences between the values of the correlation 
functions for different boundary conditions, for instance 

dt ( j ( 0 )  - s ( t ) )  = 0 E’ f CO 

These differences, obviously, do not imply different values of ((U) and .(U). 

For ionic solutions where both solvent molecules and ions are polarizable, the 
previous formulae (17) and (18) remain valid if the following substitutions are made [3]: 

3 i 
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where m, and mi are the total dipole moments of solvent molecules and ions. 
We now move on to  numerical simulations. C ( w )  has been evaluated by numerical 

simulations for a system of 1024 solvent molecules and 256 ions [4]. The solvent 
molecules were polarizable and but wihout permanent dipole moment. The short 
range interaction potentials between the solvent molecules and ions were Lennard- 
Jones (LJ) potentials. The polarizability a of the solvent molecules was in reduced 
units a* = a/.,” =0.12 and the charge q of the ions q* = q/(E+u+) = 12, where U,, 
E +  and U+ are the parameters of the solvent-solvent LJ potential and of the positive 
ion LJ potential. The other parameters of LJ potentials were given by the relations 
us/u-  = 2.5, u.,/u+ = 2.0, E + / E ,  = 1/15 and E+ = E -  and by Berthelot rules for 
the interactions between ions and solvent and between unlike ions. If U- is the unit 
of length the density was 0.0597 and the time unit was ( m u i / E S ) 1 / 2  where m is the 
mass, assumed equal, of the solvent molecules or ions. 

The simulations were performed using the Ewald potential for the electric interac- 
tions and the two values E’ = 1 and 0 (in this last case, the factor 3 must be replaced 
by 1 in the right-hand sides of (16) and (17)). The values of u(O), in reduced units, 
were 0.4 & 0.1 and 0.45 & 0.1 for E’ = 1 and 0 respectively, and of ~(0) 3.3  z t  0.3 
and 3.2 & 0.3. A similar agreement was obtained for the other values of w .  These 
results show that within the limit of the statistical error, the value of C ( w )  is inde- 
pendent of the boundary conditions if the adequate relations between u ( w ) ,  E ( W )  and 
the correlation functions of M and J are used. 

However, the statistical error on the data is large, being N 10-20%. This result is 
due to  the very slow convergence of the statistical averages in the numerical simulations 
of ionic solutions for a ionic concentration of a few percent. The physical origin of this 
slow convergence is clearly due to  the slow diffusion of the ions in the solvent. Then 
the number of integration steps in a molecular dynamics simulation or of generated 
configurations in a Monte Carlo simulation must be sufficiently large in order to  sample 
correctly the phase space of the system. This point is discussed in details in [6] where it 
is established that lo5 trial moves per particle are needed in a Monte-Carlo simulation 
to obtain good accuracy on the equilibrium correlations functions of the ions. 

In conclusion, the formalism summarized i n  the first part provides all the for- 
mulae needed for a correct interpretation of the simulation data of ionic solutions; 
however, the realization of such simulations is hampered by a very difficult problem 
of convergence. 
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